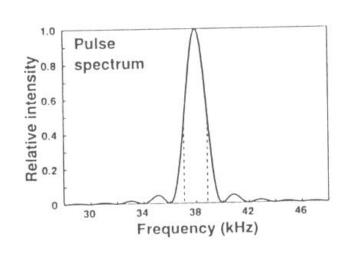
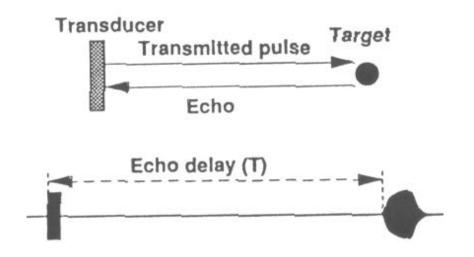

Acoustic Signal Processing

LO: Apply acoustic signal processing techniques to estimate abundances of pelagic fish species.

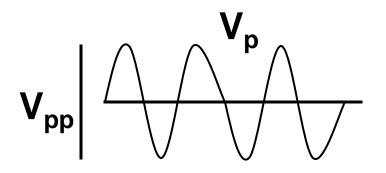

Echo Envelope



Pulse envelope

- time dependent amplitude of returned echo
- elapsed time T for an echo to return

$$T = 2 r/c$$
 $r = cT/2$

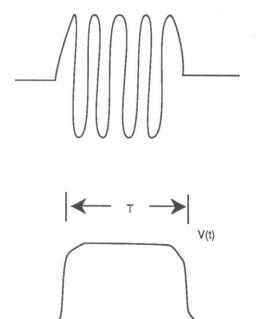

Measuring Voltage

Volts peak V_p = peak value

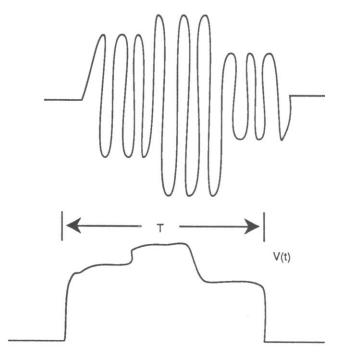
Volts peak to peak $V_{pp} = 2 V_p$

Volts root mean squared $V_{rms} = V_{pp}/2\sqrt{2}$

Volts detected = just positive



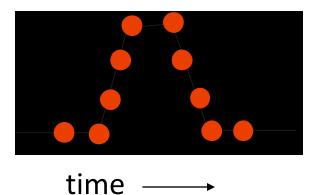
$$V_{rms}$$


$$20\log(V_{rms}) = dBv || 1 V_{rms}$$

Echo Shapes

Single

Overlapping


Digitizing Echoes

Traditional Approach:

- echosounder 'samples' received echo at a fixed rate (e.g. 25 kHz)

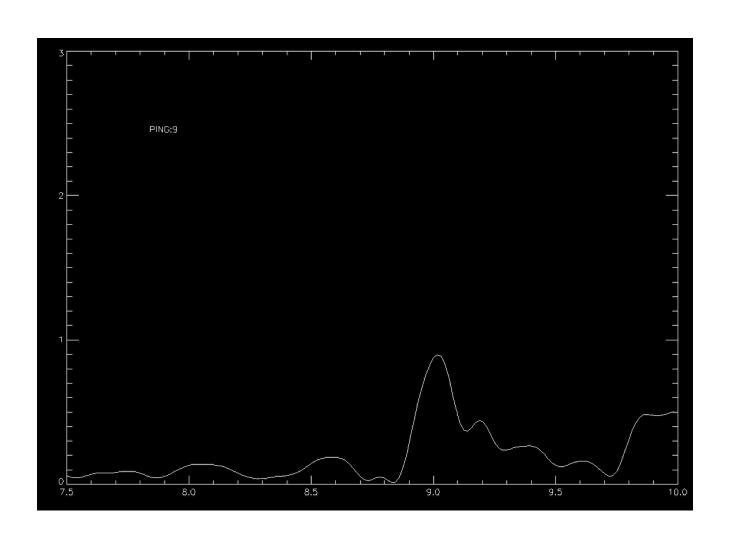
Example: if pulse width is 0.4 ms then how many samples?

 $25,000 \text{ samples/s } \times 0.0004 \text{ s} = 10 \text{ samples}$

Digitizing Echoes II

Sampling Theory Approach:

- sample rate dependent on Nyquist sampling criterion of pulse length

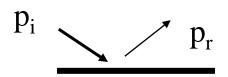

Nyquist-Shannon sampling theorem frequency:

"If a function x(t) contains no frequencies higher than B Hz, it is completely determined by giving its ordinates at a series of points spaced 1/(2B) seconds apart."

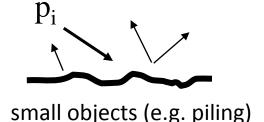
=> You can recreate the signal by sampling it at $\frac{1}{2}$ τ

EK and ES 60 samples at $\tau/4$

What is an Echo?



Acoustic Impedance


Scattering is caused by an Acoustic Impedance mismatch

Reflection (1 direction)

Scattering (all directions)

LARGE objects (e.g. breakwater)

$$R = p_r/p_i$$

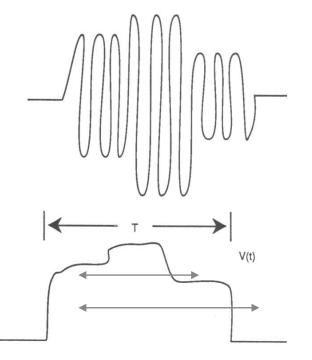
What is acoustic impedance (Z)? $Z = \rho c$

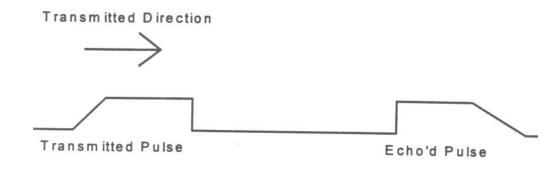
$$g = \rho_2/\rho_1$$

$$h = c_2/c_1$$

sound speed

Echoes: Acoustic Impedance Mismatch


Reflection
$$g = \rho_2/\rho_1$$
 $h = c_2/c_1$ density sound speed contrast $\frac{\rho_2 c_2}{\rho_2 c_2 - \rho_1 c_1} = \frac{\rho_2 c_2}{\rho_1 c_1} = \frac{gh-1}{gh+1}$ $\frac{\rho_2 c_2}{\rho_2 c_2} + 1$


Single Target Criteria

- metrics of echo envelope: width, correlation, phase

Envelope width: 1/2, 1/4, 1/8 maximum echo amplitude

Envelope correlation: returned echo with incident pulse

$$Correlation = \frac{\sum (real_echo(*ideal_echo))}{\sqrt{\left(\sum (real_echo^2) * \sum (ideal_echo^2)\right)}}$$

Single Target Criteria: Phase

Phase Metric Criteria

Reject as single echo if...

average phase deviation: average deviation in samples within single echo exceeds a preset limit

standard phase deviation: standard deviation of phase measurements athwart or along exceeds a preset limit

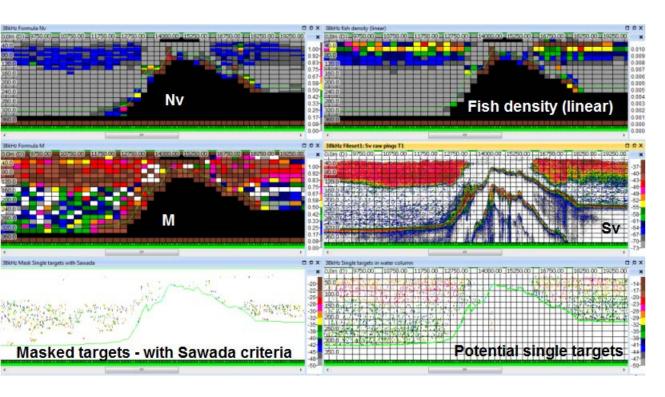
phase comparison: phase difference between adjacent elements in each pair exceeds a preset limit within 6 dB of peak amplitude

see Soule et al. 1996

Estimating Density

Depending on density you have 2 choices:

Echo Counting – count individual echoes (if densities < 1 animal / sample volume)

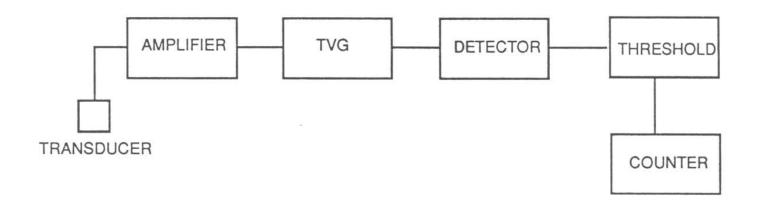

Echo Integration – sum total energy and divide by energy from representative individual

Critical Density

$$ho_c = 1/V_c$$
 critical density $lpha$ 1/volume

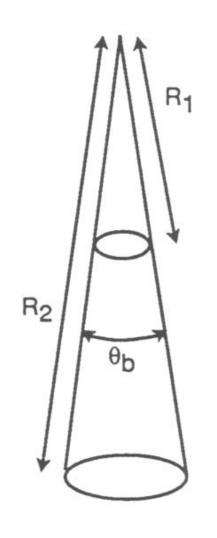
Value should be less than 1/m³, ideal less than 0.2 /m³

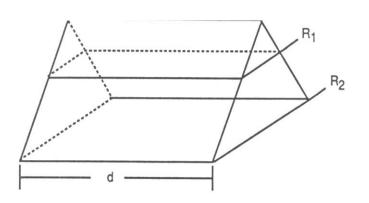
Sawada et al. (1993); Ona and Barange (1999)


M = ratio of multiple to single echoes Nv = fish density

$$Nv < 0.04$$
 $M < 0.7$

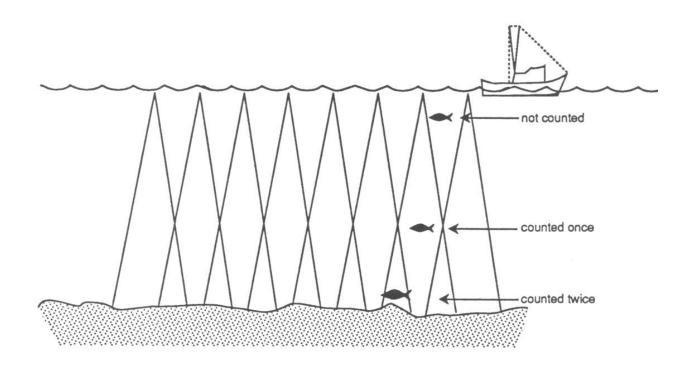
Target Counting


- first observed by Trout (1952)
- first attempted by Midttun and Saetersdal (1957)
- number of target echoes above threshold standardized to volume insonified
- threshold is used to screen noise and to reject targets smaller than those of interest (i.e. size matters)


Echosounder Target Counting

$$Density = \frac{\sum counts}{(\# pings)(volume/ping)}$$

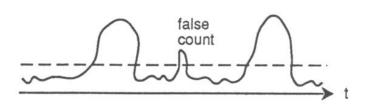
Target Counting Volume

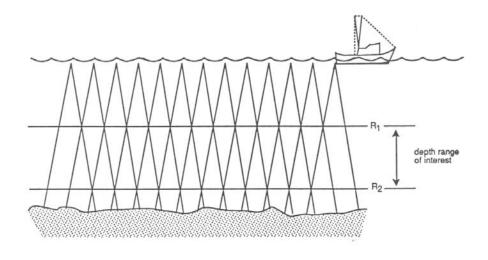


Volume =
$$\left(area o f e n d\right) * (d)$$

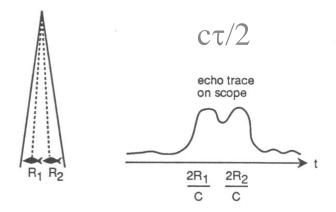
Volume = $\frac{1}{3} \left(R_2^3 - R_1^3\right) \sin^2\left(\frac{\theta_b}{2}\right)$
Density = $\frac{\#echoes}{volume\ insonified}$

Target Counting Volume


dependent on beamwidth, pulse length, and target range (i.e. resolution and range)


Pulse overlap: beamwidth, boat speed, and target or depth range

Target Counting Potential Problems


False Targets (threshold)

Pulse Overlap

Target Overlap (multiple targets)

Single Target Backscatter

Pressure of Backscattered Sound

$$p_{scat} = D_t D_r \frac{[p_o r_o]}{r^2} l_{bs}$$

where: D_t =directivity of transmit, D_r = directivity of receiver, p_o = reference pressure, r = range, l_{bs} = scattering length of target (units m)

$$l_{bs} = \frac{p_{scat}r^2}{D_t D_r [p_o r_o]}$$

Relationship Among Terms

Square of the absolute scattering length is backscattering cross section σ_{bs}

$$\sigma_{bs} = \left| l_{bs} \right|^2 \qquad \text{(units m²)}$$

Log transform of σ_{bs} is Target Strength TS

$$TS = 10\log(\sigma_{bs}) \qquad \sigma_{bs} = 10^{(TS/10)}$$

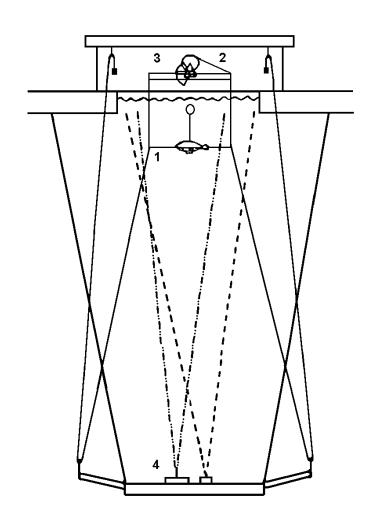
Reduced Target Strength

$$TS = 10\log(\sigma_{bs}/L_o^2) = 20\log(|l_{bs}|/L_o)$$

where L_o is a reference length, 1 m

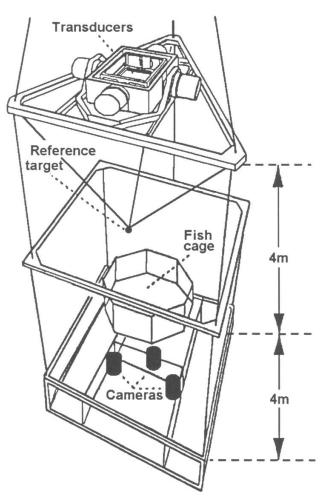
The 4π Factor

Principles and Applications of Underwater Sound (NRDC 1946) define target area (σ) as:


$$\sigma=\pi~a^2$$
 where a = radius of a sphere acoustic cross section (Isotropic scattering by a single particle)

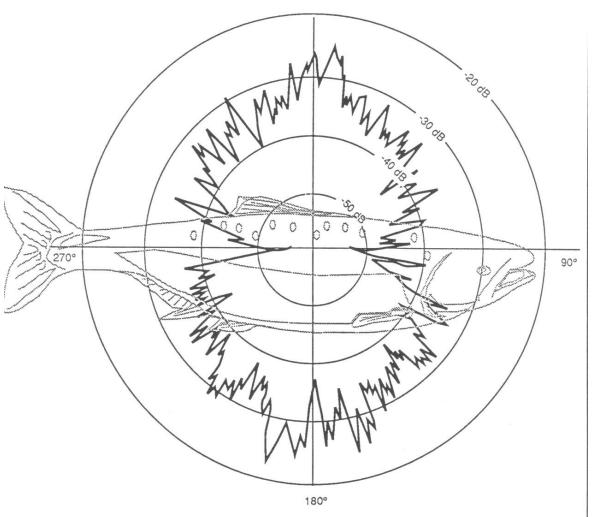
$$I_s=I_i~\sigma/4\pi r^2~$$
 where I $_s$ = scattered intensity, I $_i$ = incident intensity and $~TS=10log(\sigma/4\pi)$

But for backscatter (i.e. non-isotropic):


$$TS = 10log(\sigma_{bs})$$
 backscattering cross section

Target Strength Measurement

- individual tethered fish
- frequency-dependent measurements at known tilt angles
- *but* dead fish


Target Strength Measurement

- measurements of fish in a cage
- use optics to verify tilt angles
- use a reference target to ensure consistent system performance

Edwards and Armstrong 1984

Why is aspect important?

Fish are directional scatterers

Acker 1977

Target Strength and Fish Length

- relationship exists between organism size, measured by length or mass, and amount of scattered sound

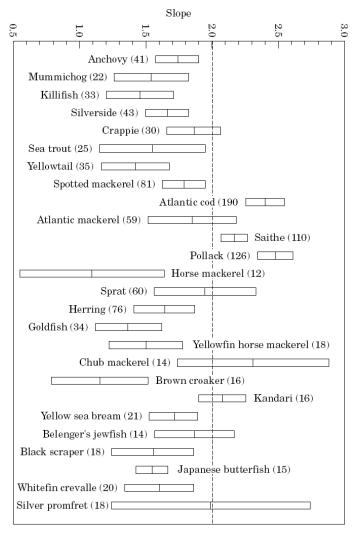
Assumptions:

- sampled targets are within the size range used to determine statistical relationship between organism and amplitude of echo
- statistical relationship between organism and echo amplitude is independent of frequency (with the exception of Love)
- statistical relationship is independent of behavior or can be averaged across behaviors (with the exception of Middtun)

Target Strength and Fish Length

Method:

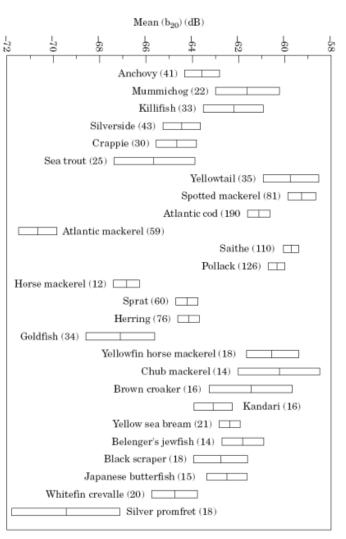
- empirically measure target strengths of individual, known-sized organisms: in situ and using nets
- regression relation between target strength and fish length (exponential or log-linear)


$$TS = a \log(L_{cm}) + b$$

Foote (1987) if TS
$$\alpha$$
 L² TS = $20 log(L_{cm}) + b$

where TS is target strength (dB), L is length (cm)

Target Strength and Fish Length


a values

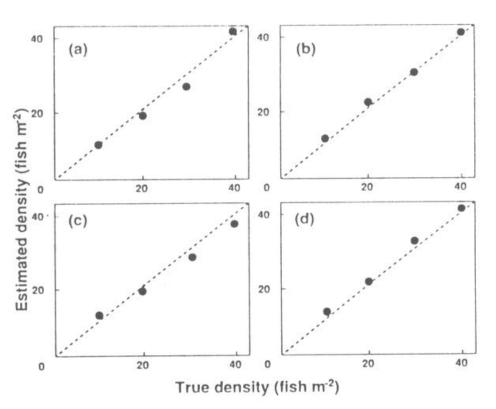
If TS α L² then predict a = 2

*slopes and intercepts not transferable across species

b₂₀ values

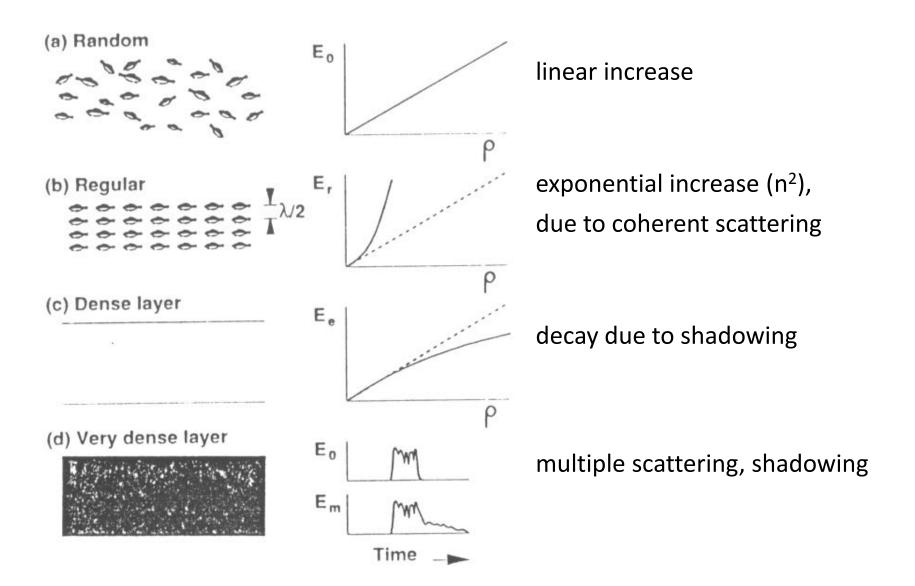
McClatchie et al. 1996

Echo Integration

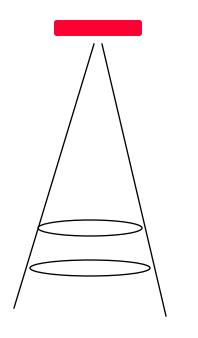

- first proposed by Dragesund and Olsen (1965)
- average acoustic energy (i.e. intensity) in specified range bins

$$ar{I} \propto N ar{\sigma}_{bs}$$

where I is average intensity, N is number of animals, and $\overline{\sigma}_{bs}$ is the average backscatter from a 'representative' fish


Linearity Principle

- assumes density is proportional to energy
- assumes acoustic extinction (i.e. shadowing) and multiple scattering are negligible
- definitive experimental evidence by Foote (1983)


- used caged, free-swimming herring and pollack
- frequency range 38 kHz 120 kHz
- densities up to 57 fish m⁻³

Deviations from Linearity

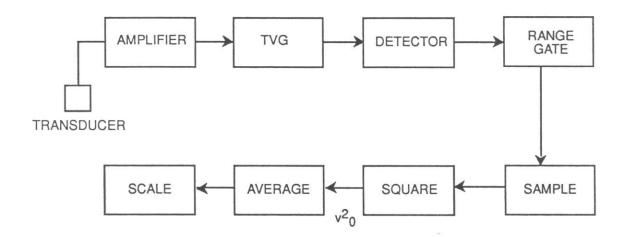
Integration volume

- assume beam is ideal with solid angle of ψ steradians

$$V = \frac{c\tau}{2} \psi r^2$$

for a circular xducer:

$$\psi = \left(\frac{4.853}{kD}\right)^2$$


k = wave number rad/m= $2\pi/\lambda = 2\pi f/c$

D = diameter of xducer

Echosounder Integration

$$E_i = \int_{t_1}^{t_2} |v(t)|^2 dt$$

where E_i is the echo integral and v(t) is the voltage at time t after the pulse

Echosounder Integration

Remember:

$$|P_{scat}|^2 = (p_0 r_0)^2 \left(\frac{1}{r_{target}}\right)^2 \left(\frac{1}{r_{source}}\right)^2 \sigma_{bs} \quad \text{linear sonar} \\ \text{targets}$$

$$EL = SL - TL_{target} - TL_{source} + TS$$

log form for single targets

For groups, energy comes from volume

$$RL = SL - 2TL + S_v + 10 log V$$
$$S_v = N\sigma_{bs}$$

log form for aggregations

Where does volume term come from?

Echo Integration Terms: Linear

3 components:

acoustic size, number of scatterers, volume insonified

Definitions:

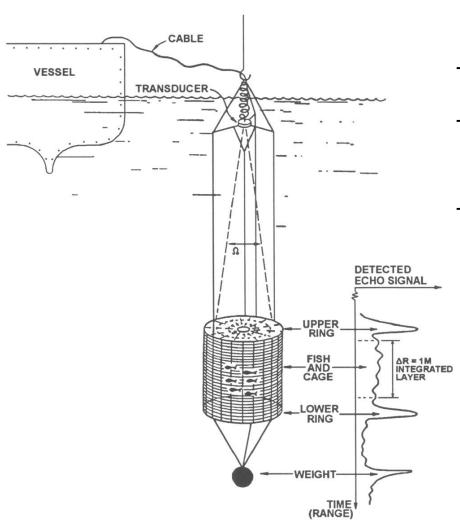
s_v = volume backscattering coefficient =

$$\sum \frac{\sigma_{bs}}{V} = \frac{n\sigma_{bs}}{V}$$

$$s_a$$
 = area backscattering coefficient =
$$\int_{z_1}^{z_2} s_v dz$$

$$s_A$$
 = nautical area backscattering coefficient = $4\pi (1852)^2 s_a$

Echo Integration Terms: Log


$$S_v = \text{(mean) volume backscattering strength} = 10 \log_{10}(s_v)$$

$$S_a$$
 = area backscattering strength = $10\log_{10}(s_a)$

$$S_A$$
 = nautical area backscattering strength = $10\log_{10}(s_A)$

cf. Table 1, MacLennan et al. (2002)

Echo Integration Measurement

- group of fish in cage
- gate layer to time (i.e. range) within cage
- integrate echo returns from gated layer

Echo Integration Limitations

dead zones: near-surface, near-bottom

non-linear effects: shadowing, multiple scattering

no acoustic species identification: rely on other methods

must know backscattering properties of target for numeric density estimates